
 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

EX.NO: 9 

DATE: 

VERSION CONTROL USING SVN 

AIM: 

Version Control System setup and usage using SVN. 

Procedure: 

In this lab you will learn about version control, which is the process of managing multiple 

versions of the files and directories in a software project. For example, if you develop a 

program over a period of several days, you may want to store a version of each source code 

file at the end of each day. Or if you decide to make major changes, you may save a copy of 

your program before you start any changes.  

Version control is also critical when multiple developers are working together on a single 

project. In particular, version control makes it easier for two people to make edits to the same 

set of files without overwriting each other's changes.  

Today you will learn the basics of SVN, an open source version control tool that is available 

on machines in the CS department network.  

Creating a SVN repository 

SVN stores versions of files in a central repository. This is a directory that is separate from 

the directory where you write and test your source code.  

Create a repository in your home directory with the command svnadmin create:  

$ mkdir /home/username/svn 

$ svnadmin create  --fs-type fsfs /home/username/svn 

Here /home/username/svn is the pathname of the new repository. Option --fs-type 

specifies the type of file system to be used by SVN; you must use the value fsfs to save a 

repository on a shared network, as is the case with department home directories.  

You can see that your new repository directory already contains files and subdirectories:  

$ ls /home/username/svn  

README.txt  conf  dav  db  format  hooks  locks  



 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

You should not directly modify any of these files or subdirectories; they are only to be used by SVN.  

Adding data to your SVN repository 

Next you will add a project to your SVN repository, but first you must create a temporary directory 

that will reflect how the project will be organized.  

Create the directory /tmp/lab8_username on your machine:  

$ mkdir /tmp/lab8_username 

Also create these subdirectories:  

$ mkdir /tmp/lab8_username/trunk 

$ mkdir /tmp/lab8_username/branches 

$ mkdir /tmp/lab8_username/tags  

trunk is the directory that you will use to store and edit files that you will upload to the repository. 

We will explain directories branches and tags later on.  

In this lab we will start by making a repository from the unmodified mypoint files from the 

last lab. Copy these files into the trunk directory:  

$ cd /tmp/lab8_username/trunk 

$ cp /stage/classes/archive/2011/summer/50101-1/lab/lab7/src/mypoint/* 

. 

$ ls  

distance.c mypoint.c mypoint.h  simple.c 

Next you will add the source files into your SVN repository. (We only want to import source code 

files, so if you have compiled the above program then remove the binary files now.)  

Call svn import to add lab8 and all its contents to the repository. (Here we refer to import 

as a subcommand of svn):  

$ svn import /tmp/lab8_username 

file:///home/username/svn/cspp50101/lab8 -m"Initial import"   

Adding         /tmp/lab8_wax/trunk 

Adding         /tmp/lab8_wax/trunk/mypoint.c 

Adding         /tmp/lab8_wax/trunk/mypoint.h 

Adding         /tmp/lab8_wax/trunk/simple.c 

Adding         /tmp/lab8_wax/trunk/distance.c 

Adding         /tmp/lab8_wax/branches 

Adding         /tmp/lab8_wax/tags 

 

Committed revision 1. 

Let's look at the arguments in this call to svn import:  

http://svnbook.red-bean.com/en/1.1/re12.html


 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

 /tmp/lab8_username is the directory that will be added to the repository, along with its 
contents.  

 file:///home/username/svn/cspp50101/lab8 indicates that /tmp/lab8_username 
and should be added as the virtual directory /home/username/svn/cspp50101/lab8. 
We say this directory is virtual because the directory /home/username/svn/ does not 
actually contain a subdirectory called cspp50101/lab8 that you can examine with ls and 
cd. Instead, data is stored in a database format, and you must use SVN tools as an interface 
to examine the repository.  

 -m is used to associate a log message with this import. If you do not give a message then a vi 
editor will open for you to enter one.  

SVN stores multiple revisions of your repository, where each revision is a snapshot of the 

repository at a certain point in time. A new, empty repository is at revision 0, and as the 

above output shows, revision 1 is created when you first import data.  

View the contents of your repository by calling svn ls:  

$ svn ls file:///home/username/svn/cspp50101/lab8  

branches/ 

tags/ 

trunk/ 

$ svn ls file:///home/username/svn/cspp50101/lab8/trunk  

distance.c 

mypoint.c 

mypoint.h 

simple.c 

At this point you can remove the directory /tmp/lab8_username because its contents are 

now stored in your SVN repository.  

$cd  

$rm -rf /tmp/lab8_username  

Checking out a repository 

Next you will learn how to access and update the files that you have just imported. Call svn 

checkout to retrieve the repository data from the virtual directory that you just created:  

$ cd /home/username/cspp50101 

$ svn checkout file:///home/username/svn/cspp50101/lab8  

A    lab8/trunk 

A    lab8/trunk/distance.c 

A    lab8/trunk/mypoint.c 

A    lab8/trunk/mypoint.h 

A    lab8/trunk/simple.c 

A    lab8/branches 

A    lab8/tags 

Checked out revision 1. 

http://svnbook.red-bean.com/en/1.4/svn.basic.in-action.html#svn.basic.in-action.revs


 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

You can see that all the files for the Lab 8 project are now found in directory 

/home/username/cspp50101/lab8/trunk:  

$ cd lab8/trunk 

$ ls  

distance.c  mypoint.c  mypoint.h simple.c 

Editing source files and reviewing edits 

You are now ready to edit the Lab 8 source code. First, add the changes you made to distance.c, 

mypoint.h, and mypoint.c in Lab 7. (You can just copy these files into the current directory). Also 

copy the Makefile you made in the last lab into the current directory. Build the executable distance 

by calling make to check that your updates are correct.  

After you have distance.c and mypoint.c, you can use the svn status command to compare 

the current directory with the repository:  

$ svn status  

?      distance 

?      Makefile 

M      mypoint.c 

M      mypoint.h 

M      distance.c 

The '?' tells us that, as we expect, files Makefile and distance are not under version control. On the 

second line, 'M' tells us that source code files mypoint.c, mypoint.h, and distance.c have been 

modified since you checked it out from the repository. File simple.c is not listed since it has not yet 

been updated.  

$ svn diff mypoint.h  

Index: mypoint.h 

=================================================================== 

--- mypoint.h (revision 1) 

+++ mypoint.h (working copy) 

@@ -8,6 +8,11 @@ 

 #define MYPOINT_H 

  

 /* *** Add structure declaration here *** */ 

+struct mypoint 

+{ 

+  double x; 

+  double y; 

+}; 

  

 /* Returns the distance between points (x1,y1) and (x2,y2) */ 

 double get_distance( struct mypoint * p_p1, struct mypoint * p_p2); 

Here the lines marked with '+' mark which lines are found in the updated file, and '-' shows the same 

line in the repository version.  



 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

Committing changes 

At this point you have updated your working copy of mypoint.c, but the copy in the repository is 

unchanged. To update the repository you need to commit your changes by calling svn commit:  

$ svn commit -m"Adding changes for lab 7"  

Sending        trunk/distance.c 

Sending        trunk/mypoint.c 

Sending        trunk/mypoint.h 

Transmitting file data . 

Committed revision 2. 

The last line tells us that we are at revision 2 of this repository. You can also type svn info to see 

revision number information:  

$ svn info  

Repository Root: file:///home/username/cspp50101/svn 

Repository UUID: 1d5eca6d-b426-4f00-922e-c42863db29fe 

Revision: 1 

Node Kind: directory 

Schedule: normal 

Last Changed Author: username 

Last Changed Rev: 2 

Last Changed Date: 2009-03-07 12:16:30 -0600 (Fri, 07 Mar 2009) 

After committing your changes, re-check the status of the current directory:  

$ svn status  

?      distance 

?      Makefile 

Note that source code files no longer shows up as modified, i.e., with the 'M' status code, since the 

repository and working copies are now identical.  

It is possible to recover previous revisions of a file that is under version control: You can use 

the command svn update to restore your working copy to the latest version in the 

repository:  

$ rm mypoint.c  ## delete source file 

$ svn update   

Restored 'mypoint.c' 

At revision 2. 

$ ls *.c   

mypoint.c distance.c simple.c 

You can also checkout earlier revisions of a file with the -r option:  

$ rm mypoint.c  ## delete source file 

$ svn update mypoint.c -r 1   

U    mypoint.c 

http://svnbook.red-bean.com/en/1.1/re28.html


 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

Updated to revision 1. 

Here the 'U' indicates that your current version of the file was updated to match the revision that 

you requested.  

You can also call svn update without a file name to update an entire directory:  

$ rm *.c 

$ svn update   

Restored 'mypoint.c' 

Restored 'distance.c' 

Updated to revision 2. 

Adding files to the repository 

After you have created the original repository you may still add and delete files and directories by 

calling the commands svn add or svn delete. As before, you must call svn commit to apply 

your local changes to the repository.  

You should have already added a Makefile to your lab8 directory. Add this Makefile to the 

repository by calling svn add:  

$ svn add Makefile   

A         Makefile 

Here the status code 'A' indicates that Makefile will be added on the next commit.  

$ svn commit -m"Adding Makefile"  

Adding         trunk/Makefile 

Transmitting file data . 

Committed revision 3. 

You can now call svn update and svn ls to see that your changes are in the repository:  

$ svn update  

At revision 3. 

$ svn ls  

Makefile 

distance.c 

mypoint.c 

mypoint.h 

simple.c 

Tags and branches 

We mentioned above that you should use the directory trunk in your repository to store and edit 

files. As your project develops, you may find that you would like to take a "snapshot" of your project 

at a particular revision. For example, you may want to tag a version after you have completed a 



 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

major revision. You can do this using by storing this version in the tags directory that you created 

earlier.  

Next you will tag the current version of your project, which now contains a Makefile. To do 

this you will make a virtual copy of your latest revision, using the command svn copy:  

$ cd  .. 

$ pwd  

/home/username/cspp50101/lab8 

$ ls  

branches tags trunk 

$ svn copy trunk tags/uses-make   

A         tags/uses-make 

Next commit your changes. Note that you should pass the argument tags to the svn commit 

command, to indicate that you only want to commit changes in this directory:  

$ svn commit tags -m "Tagging version where Makefile added"   

Adding tags/uses-make 

  

Committed revision 4. 

$ svn ls tags/uses-make  

Makefile 

distance.c 

mypoint.c 

mypoint.h 

simple.c 

While it appears that we have copied all the files in the trunk directory, in reality SVN has only 

tagged a particular revision in its internal database. At any time you can check out a copy of this new 

directory:  

$ cd /tmp 

$ svn checkout file:///home/username/svn/cspp50101/lab8/tags/uses-make  

A     tags/uses-make/Makefile 

A     tags/uses-make/mypoint.c 

A     tags/uses-make/mypoint.h 

A     tags/uses-make/distance.c 

A     tags/uses-make/simple.c 

$ ls uses-make  

Makefile mypoint.c  mypoint.h  distance.c simple.c 

The branch subdirectory is used when you want to make two separate versions, or "branches" of 

your program, and would like to continue to work on both branches independent of each other. We 

will not cover branches in this lab.  

Accessing a repository remotely 

In this lab you created a repository in your home directory that can be accessed from any machine in 

the department network. Home directories have quotas, however, and this may cause problems for 

larger projects where the SVN database uses up disk space.  

http://svnbook.red-bean.com/en/1.4/svn.ref.svn.c.copy.html


 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

One alternative is to place the repository on another machine and access it remotely. This can 

be done by using the svn+ssh schema with SVN commands, as shown below (You do not 

need to run this step yourself):  

$ svn ls svn+ssh://someone@hostname.cs.uchicago.edu/data/svn/trunk 

usernames@hostname.cs.uchicago.edu's password: 

foo.c 

foo.h 

Makefile 

Remote access also allows users on different machines to access the same SVN repository and work 

together on a single project.  

If you would like to set up a repository for collaborative work on future projects, then you 

should email techstaff@cs.uchicago.edu for assistance.  

Your work for exercises 1 and 2 should be completed in directory 

/home/username/cspp50101/lab8/trunk/ where you initially added your updates for the 

mypoint module.  

typedef and type constructors 

In file mypoint.h we created a new compound data type called mypoint, representing a 2-

dimensional point. In our code we refer to this type as struct mypoint. We declare 

variables of this new type as:  

  struct mypoint p1, p2; 

Alternately, we can rename this new data type using typedef:  

typedef struct mypoint { 

  double x; 

  double y; 

} MYPOINT; 

MYPOINT is a new type name that is equivalent to struct mypoint. A declaration of two type 

point variables becomes:  

  MYPOINT p1, p2; 

 

 

 



 VELAMMAL INSTITUTE OF TECHNOLOGY              PAGE NO: 

 

 

 

 

 

 

 

 

 

 

Result: 

 Thus the version control for handling different software version was successfully 

completed using SVN.  


